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The dilatations and the 4-parameter special conformal group are interpreted as geometrical gauge trans-
formations of the Minkowski space and new arguments are given as to why the conventional interpretation
of the special conformal group as a set of transformations connecting systems with constant relative ac-
celerations cannot be true. The dilatations and the special conformal group are considered to be approximate
symmetries in particle physics in the sense that they become ‘“‘good’” groups at very high energies, but are
broken for low energies when the rest masses are important. These properties are illustrated in the case of
classical point particles by the partially conserved quantities associated with the new symmetries. One of the
interesting features is that the transformation by reciprocal radii appears as a new discrete approximate
space-time symmetry. This is probably of interest for the problem of P and CP invariance. The geometrical
interpretation is analyzed in terms of homogeneous coordinates and the physical significance of these co-
ordinates is discussed. This analysis leads in a straightforward way to the group O(2,4), which is isomorphic
to the full 15-parameter conformal group in Minkowski space, including the full Poincaré group. A con-
formal-invariant generalization of the usual notion of Einstein causality is given and analyzed. The relation-
ship between tensors and spinors of the group 0(2,4) and the usual space-time spinors and tensors is dis-
cussed, employing results obtained by Dirac. Finally the field equations for electrodynamics and the pseudo-
scalar coupling are written down in terms of the new spinors and tensors. These equations do not contain a

28 OCTOBER 1966

bare-mass term. The masses are considered to be consequences of the interaction.

I. INTRODUCTION

ROKEN and approximate symmetries have been
playing a very stimulating and interesting part in
particle physics. The unitary groups in particular appear
to be useful in classifying elementary particles and in
describing some of the patterns which characterize the
interactions of these particles. The group SU; seems to
provide a good description of the isospin; the higher
symmetry SUjs—the eightfold way'—and its breaking
has given a number of insights into the physics of
particles and something similar may be said about even
higher symmetries.?

A characteristic feature of these higher symmetries is
that one starts by neglecting the mass differences of a
certain class of particles. The higher the energies of the
particles involved the better is this approximation, for
at higher energies the mass differences, or even the
masses themselves, become negligible. Thus these sym-
metries seem to be good symmetries at very high
energies, but they have to be broken, as soon as mass
differences become interesting at lower energies.?

In all these symmetry considerations the breaking
affects the so-called internal symmetries: The Poincaré
group is always considered a good symmetry group,
with the restriction that space-reflection and CP invari-
ance may be violated in certain types of interactions.
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These last restrictions show that approximate or
broken space-time symmetries exist, too, and one may,
therefore, ask whether there are additional approximate
space-time symmetries, which may be badly broken for
low energies, but which are good symmetries for particle
physics in the very high energy region.

It has been proposed in several papers*® that the
dilatations and the special conformal group—see Egs.
(19)-(21) below—are symmetries of this kind. We have
not yet discussed the usefulness of these groups for the
classification of particle multiplets,” but a comparison
with experiments of the consequences of these higher
symmetries for scattering amplitudes at high energies is
very encouraging® and a more detailed analysis of the
physical meaning of these new groups would seem to be
worthwile.

Such an analysis has been given for the dilatations.®?
This group maps a certain length into another one which
differs from the first one by a factor independent of the
position in space-time. In the following sections we shall
interpret the special conformal group similarly, namely
as a geometrical gauge group the elements of which map
a given length into another one which differs from the
first one by a space- and time-dependent factor.??

4H. A. Kastrup, Phys. Letters 3, 78 (1962). The inequality
following Eq. (10) of this paper should read €20 (see Ref. 6).

5 H. A. Kastrup, Phys. Letters 4, 56 (1963).

6 H. A. Kastrup, Nucl. Phys. 58, 561 (1964).

7H. A. Kastrup, Phys. Rev. 142, 1060 (1966).

8 H. A. Kastrup, Phys. Rev. 147, 1130 (1966).

9 See however D. Bohm, M. Flato, D. Sternheimer, and J. P.
Vigier, Nuovo Cimento 38, 1941 (1965). This paper contains
references to related work. The covering group SU(2,2) of the
conformal group appears also as a subgroup of the group U(12),
etc., discussed by Salam ef al. [ Proc. Roy. Soc. (London) A284, 146
(1965)] and by others [see Ref. 2 and Proceedings of the Second
Coral Gables Conference on Symmetry Principles at High Energies,
edited by B. Kursunoglu (W. H. Freeman and Company, San
Francisco, 1965)].

10 H. A. Kastrup, Ann. Phys. (Leipzig) 9, 388 (1962) ; this paper
contains many references on the conformal group.
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We have already discussed earlier'®!! why the con-
ventional interpretation of the special conformal group
as a system of transformations which connect frames of
references with constant relative acceleration cannot be
the right one. We shall give another simple argument in
Sec. V which shows that such an interpretation would
imply that velocities of particles could be larger than the
velocity of light. As far as we know this is impossible.

The present paper is intended to clarify some of the
elementary physical properties of the dilatations and
particularly those of the special conformal group. Since
almost nothing is known about the conserved or almost
conserved quantities associated with these groups, we
discuss some of their simple properties in Secs. II-IV.
This can be done without referring to the space-time
interpretation of the special conformal group, which will
be given in Sec. V.

In order to discuss the space-time properties of the
special conformal group we employ the notion of
homogeneous coordinates.® This notion is very con-
venient and has also a simple physical interpretation.
The main idea is that one can characterize space-time
positions by coordinates without a dimension of length,
whereas this is not possible for a length ds which is
always characterized by two points. These considera-
tions lead in a natural way to the group 0(2,4) which is
isomorphic to the full 15-parametric conformal group
including the full Poincaré group.

In this context we also discuss the notion of Einstein
causality : Whereas one has to use the differential form
dx*dx; in x space, in order to define space-like and time-
like distances in a conformal-invariant way, one can use
a global quadratic form of the homogeneous coordinates,
in order to distinguish between these two types of
distances.

In the final sections we relate some spinors and
tensors of the group 0(2,4) to the corresponding spinors
and tensors which occur in the Dirac equation, in
Mazxwell’s equations, etc. These relations, which are
mainly attributable to Dirac,? are intended to serve the
following purpose, which will be discussed in detail
elsewhere: The interaction Lagrangians in quantum
electrodynamics, in the pseudoscalar coupling and in
weak interactions, mediated by a vector boson, are all
invariant—at least formally—under the new groups
discussed here.* The only terms in these (unrenormal-
ized) theories which are not invariant are the kinetic
bare mass terms. Since the physical meaning of these
bare masses is unclear anyhow, one is inclined to discard
them completely and consider the physical masses as
consequences of the interactions.®~" As the dilatations

11 H, A. Kastrup, Phys. Rev. 143, 1021 (1966) ; contractions of
the conformal group have also been considered by R. Prasad,
Nuovo Cimento 38, 1921 (1965).

2P, A. M. Dirac, Ann. Math. 37, 429 (1936).

BBH. P. Diirr, W. Heisenberg, H. Mitter, S. Schlieder, and K.
Yamazaki, Z. Naturforsch. 14a, 441 (1959).

14Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);
124, 965 (1962).
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and the special conformal group seem to imply continu-
ous mass values®” these symmetries have to be broken
somehow in order to account for the observed discrete
mass spectrum of particles. We do not know, for the
time being, how to break these symmetries. One possi-
bility was pointed out in Ref. 11; another one is the
spontaneous breakdown!417 of these symmetries as a
consequence of the ground state not being invariant
under dilatations and special conformal transforma-
tions. The latter possibility seems to be supported by
the comparison with experiments® of the high-energy
predictions of these groups. In this case one has to take
into account the soft-meson background which is cer-
tainly not invariant under dilatations.

We shall write down the field equations for interacting
systems with spin 2 and spin O or 1. These equations
correspond to the usual equations of quantum electro-
dynamics and the pseudoscalar coupling without a bare
mass term. They explicitly show the invariance of the
interaction terms under the full conformal group. Their
interpretation, quantization, and other properties will
be discussed elsewhere.

II. CLASSICAL KINEMATICS

In order to illustrate some elementary properties of
the new quantities associated with the dilatations and
the special conformal group, we shall discuss the ex-
ample of classical relativistic point particles, charac-
terized by their momenta p and energy'® po= (p?4-m?)*/2.
The motion of a free particle is described by the relation

x()=(p/po)t+a, ¢9)

where a is the position of the particle at time {=0. The
constant angular momentum m of such a particle is
given by

m=xXp=aXp, )
and its Lorentz momentum n is
nN=Xxp—%P=poa. 3)

The quantities in Egs. (2) and (3) are associated with
the homogeneous Lorentz group. The corresponding
quantities of the dilatations and the special conformal
group are respectively?:

s=ipi=pu—p-X,
and
h,-E2x,-x"p,-—x2p,-, i=0, 1,2,3.

15 K) Johnson, M. Baker, and R. Willey, Phys. Rev. 136, B1111
(1964).

16 R. Haag and Th. A. J. Maris, Phys. Rev. 132, 2325 (1963).

17 Proceedings of the Seminar on Unified Theories of Elementary
Particles, edited by H. Rechenberg (Max-Planck-Institut fiir
Physik und Astrophysik, Miinchen, 1965). Symmetry-breaking
solutions of the conformal-invariant Thirring model have been
discussed by H. Leutwyler, Helv. Phys. Acta 38, 431 (1965).

18 We use the units ¢=1=4% and the metric a?= («°)2—x2.
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If we insert the relation (1) into these quantities we get
s= (m?/po)t—ap, 4)

ho= (m*/po)+a’po, ®)

h= (m*/po)[ (b/po)*+2at]+a’p—2(a-p)a. (6)

The expressions (4)-(6) show that s and %; are
constants of the free motion only, if either m=0 or
po — 0. In analogy to the language adopted in connec-
tion with the axial-vector current in weak interactions,
where the situation is similar,’®2 we call s and 7%,
1=0, 1, 2, 3, partially conserved quantities.

In the following discussions we shall assume that we
can neglect the time-dependent terms in Egs. (4)-(6),
i.e., we either deal with a massless particle or with a
particle at very high energies.

Whereas the angular momentum essentially describes
the perpendicular distance between the origin and the
orbit of the free particle, the quantity s, the “central
phase,”” ¢ gives the projection of the vector a onto p.
For a0, we have ms0, but s=0, if al p; and m=0,
but 50, if a||p.

The Bessel-Hagen momental! /; are of second order in
the position variables or in a. It is easy to verify that
ho*=h2. Furthermore, if ¢ is the angle between a and p,
then 7— ¢ is the angle between a and h, i.e., if a is
parallel to p, then h is antiparallel to a, etc.

The usual definition for the velocity of a particle is
Vp=p/po. We can define a new % velocity by the ex-
pression vi,=h/k,. Since the direction of h differs in
general from that of p, then v, is in general different
from v,,. One asks, of course, what the physical meaning
of this second velocity is. The quantum-mechanical
discussion of Sec. V will show that in general p and h
cannot be measured simultaneously and that they are
complementary in very much the same way that the
positions and momenta are complementary in quantum
mechanics.”* Thus, only one of the two velocities can
have a sharp value.

It is interesting to eliminate a from the Egs. (2)-(6)
and express all quantities in terms of the vectors p
and h:

po=+ )", ho=-+ (W),
hXp=2sm, ph—hp=2sn, h p=2s.

These relations bear a close resemblance to the Lie
algebra of the conformal group," the elements of which
can be generated by the generators P; and K; of the
translations and the special conformal transformations.

To get a feeling for the orders of magnitude of s and %,
in particle physics let us assume that a is of the order of
1 fermi and po of the order 10° F! (=200 GeV). s is
then of the order 10% which is the same as that of m,

(1"51\/;. L. Goldberger and S. B. Treiman, Phys. Rev. 111, 354

958).

20 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
2'Y. Nambu, Phys. Rev. Letters 4, 380 (1960).
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and % is of the order 10° F, a rather small length which
becomes larger with increasing energy.

Next we wish to discuss some transformation prop-
erties of s and %;. It is obvious from their definition that
s is a scalar and %; a 4-vector with respect to the
orthochronous proper homogeneous Lorentz group.
Under space translations x— x-y, s goes over into
s—p-y. This behavior is similar to that of m: m—m
+yXp. Under a time translation {— {47 we have
s — s+por. The transformation properties of %; under
translations are not so simple. The reason is that the
translations and the special conformal transformations
combined do not form a group.!

From the usual properties of p and po under space
reflections P(p— —p, po— po) and time reversal
T(p— —p, po— po) the following relations can be
derived from the definitions of s and %;:

h— —h, ky— h;
h— —'h, ho—)kg.

P: s—s,

T: s— —s,

As an additional and new discrete symmetry group
we get the transformation R by reciprocal radii [see
Eq. (21) below]. We shall discuss its geometrical
meaning in detail in Sec. V. This group induces the
following transformations!:

R: m—m,

n—n, §s—-—s,

p'_)h’ ?0'_)};0) h_-)p) ho—_)p0*

All the above discussions show that the quantities s
and %; constitute an additional set of observables which
characterize a particle. Since these new observables are
only partially conserved, they might not be very useful
for low energies and finite rest masses. But we have
learned during the last years that partially conserved
quantities (currents) can be of considerable physical
interest at very high energies.’®# The same might be
true for our case here. Furthermore, we have seen that
h is a vector which can carry parity, and it might be of
some significance for the problem of P violation in weak
interactions, particularly in connection with the new
discrete group R, for this transformation maps the piece
of the full conformal group which contains the unity
transformation into the same piece into which it is
mapped by the space reflections.!® This conjecture about
a possible interesting application of the conformal
group is emphasized by the fact that the weak inter-
actions have a form (V-4 coupling) which suggests that
the masses of the particles are dynamically unimpor-
tant, for they are 45-invariant whereas the kinematical
mass terms are not. In addition to this the masses of the
leptons are small and very soon become negligible for
higher energies.

(122 Sgephen L. Adler, Phys. Rev. 140, B736 (1965); 143, 1144
966).
3 J, D. Bjorken, Phys. Rev. Letters 16, 408 (1966).
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III. THE ELASTIC SCATTERING OF TWO
CLASSICAL POINT PARTICLES AT
VERY HIGH ENERGIES

As a nontrivial application of the new quantities
discussed above we consider the elastic scattering of two
classical point particles which have either the mass zero
or have very high energies. It might also be possible to
consider such a system as a crude model for the centers
of gravity of two astrophysical systems which are far
apart from each other for large negative times—the
time scale is here, of course, quite different from that in
atomic collisions—but which come close to each other
around the time {=0, move with an average relative
velocity which is almost equal to the velocity of light,
and which are again far apart for very large positive .

We do not specify the interactions of the two parti-
cles; we merely assume that they allow for the con-
servation of s and %, at very high energies. It is not clear
to me whether this is so for gravitational interactions,?
but it seems to be the case for weak (mediated by a
vector meson), electromagnetic, and strong interactions.
We further assume that the motion of the particles can
be characterized asymptotically by an expression of the
form (1). We observe the collision in the c.m. system of
the two particles.?

For very large negative times we have

X1,0==£(p/po)t+ai,z )

for the position of the two particles. ¢ is the time of the
observer. By a suitable choice of the orgin we can make
a; vanish and put a;=a. For very large positive times
we have

X1,0= == (p'/po)t+ass. ®)

The differences between p and p’ and between a; and
a/, i=1, 2, describe the asymptotic effects of the
interaction between the particles around (=0. We ask
now which conditions are imposed on the final-state
parameters, if we assume not only the usual 10 con-
servation laws associated with the Poincaré group but
also those which are associated with the dilatations and
the special conformal group.
Conservation of the Lorentz momenta gives

m+m=a=n,/4ny'=a,’'4a,. )

2 Conformal invariance within the framework of general rela-
tivity has been discussed by R. H. Dicke, Phys. Rev. 125, 2163
(1962) ; see also R. H. Dicke, in Relativity, Groups, and Topology,
Les Houches Lectures 1963, edited by DeWitt and DeWitt (Gordon
and Breach, Science Publishers, Inc., New York, 1964). Our dis-
cussion is restricted to the Minkowski space and at the moment
we do not know its consequences for general relativity.

% These assumptions are supposed to avoid possible conflicts
with various “no interaction” theorems and to avoid interaction
momenta which vanish in the c.m. system [H. Van Dam and E. P.
Wigner, Phys. Rev. 142, 838 (19606) ; references to related papers
can be found here]. Additional terms in Eq. (1) due to long-range
interactions seem to cause no troubles anyway at very high ener-
gies (see Ref. 6). Our main interest, for the time being, is to illus-
trate by a simple model the implication of additional conservation
laws, not whether this model can be justified for the various types
of interaction.
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From angular momentum conservation it follows that

(10)

This equation means that the impact parameter
a sin(a,p) is an invariant of the collision and that the
plane defined by the orbits of the two outgoing particles
is parallel to the corresponding plane of the incoming
particles. In the following discussion we shall assume
that the two planes are identical.

We see that there is at least one nontrivial solution
p=p’ satisfying all 15 conservation laws, namely a=a,’
=ay’=0. This occurs if the two particles have a delta-
function-like interaction at time f=0, which results
in a change of the direction of motion. In this case
all the quantities n;, my, s;, %;(9), etc., =1, 2, are zero
(s-wave scattering). In the following, this case is
excluded.

We further have

—aXp=—(a/—ay)Xp'.

sitse=a-p=s/+s5'= (a’’—a)) p. (11)
From Egs. (9), (10), and (11) it follows that
a1l‘az'=0- (12)

If a,"=0, then one concludes that p=p’. This is a trivial
case. For a;’=0 we get p=—p’. This is again trivial,
since only the labeling of the particles is interchanged.
But if a,/, a;'>40, then the Eq. (12) means that they are
orthogonal and this is a nontrivial restraint which goes
beyond those imposed by momentum, angular mo-
mentum and Lorentz momentum conservation. Since
the quantity s is a measure for the projection of the
parameters a;’ on the orbit of the particles, the condition
(12) implies a constraint on the time delay of the
particles in the interaction region. This can be seen
more clearly in a quantum-mechanical description
where the conservation of s imposes conditions on the
derivative of the phase shift.’ Here it follows from the
properties |a,|, |as’| < |a| which are a consequence
of Egs. (9) and (12), but which cannot be inferred from
Eq. (9) alone.

Tt is relatively easy to see that the conservation laws
for the Bessel-Hagen momenta #,(z), 2=1, 2, do not
introduce new restrictions which go beyond those
already obtained. We have

ho(1)+ho(2)=a’po=ho' (1)+h' (2) = (a1'*+a:") po,

which is satisfied according to Eqs. (9) and (12). Taking
the square of both sides of the equation

hy+h,=—a’p+4-2(a-p)a=hy+h,’
= (a)?—a,?)p’'—2(ay-p")a)/+2(a’ - p")ay’ (13)

and taking into account (9) and (12) shows that the
moduli of the vectors h;+h, and h,/+h,’ are equal
without additional restrictions on the parameters. The
same holds true for the components of these vectors
along the direction a=a,'+a,’, which can be seen from
the scalar product between this vector and the two
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sides of Eq. (13). The equality of the corresponding
cross product finally completes the proof that Eq. (13)
is valid for all parameters which fulfill the conditions
(9), (10), and (11).

IV. QUANTUM-MECHANICAL KINEMATICS

In order to get some insight into the simultaneous
measurability of p;, s, ki, etc., we consider the Lie
algebra of the conformal group. We denote the genera-
tors of the Poincaré group as usual by P; and M ; and
the generators of the dilatations and the special con-
formal group by D and K, 1=0, 1, 2, 3, respectively.
We assume all these operators to be Hermitian with
respect to a certain scalar product (¢1,¢2) of a given
Hilbert space. The expectation value (0) of an operator
O with respect to a state ¢ is defined by (0)= (¢,0¢) and
the corresponding fluctuation (uncertainty) AO by
{((0—{0))2)2, If we have two operators Oy and Oy, then
the general uncertainty principle is?®

(A01)(A0,) 23| (4,L01,0:10) | - (14)

Heisenberg’s quantum-mechanical uncertainty principle
for p and ¢ is a special example of this relation.

From the Lie algebra of the conformal group’ it
follows that

(AK)(AP9) 2 | (@,D9)], i=0,1,2,3.  (15)

We see that the product (AK;)(AP;) depends on the
state considered. Since D is an unbounded operator, the
right-hand side of Eq. (15) can become arbitrarily large
and therefore the quantities P; and K ; in general cannot
have sharp values at the same time. Furthermore, we
have

(AK)(APY 2 | (6, M us)|, i5%k;i,k=0,1,2,3. (16)

Since the operators M 4, 1, k=1, 2, 3, are bounded, the
right-hand side of relation (16) is at least bounded
for these indices, but the operators K; and P; again
cannot be measured simultaneously, if the right-hand
side does not happen to vanish for that particular state.
Because of RD=— DR the right-hand side of Eq. (15)
vanishes, for instance, if ¢ is an eigenfunction’ of R.
We also see from the Lie algebra that we can, for in-
stance, choose K, and the angular momentum as
commuting set of observables instead of Po, M? and
M y,. In that case Pq is no longer sharp. It is worthwhile
to illustrate this in more detail. We take the example of
a particle with both spin and mass zero,” where the
scalar product has the form

d3
(o) = / —Z-f¢*<p>¢<p>, po= @2, (A7)

For this example the elements of the Lie algebra.are

2% A simple derivation can be found in Becker-Sauter, Electro-
magnetic Fields and Interactions (Blaisdell Publishing Company,
New York, 1964), Vol. II, p. 118.
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explicitly given in Ref. 7. If we put ¢=p¢%, (¢,0)=1,
where « and §8 are real functions of p, then we have, for
instance, for

3
D=i(% pio;+1):

J=1

d3
(D)= (6,D¢)=— / 2—562@)1’"6:'& ®. @8

If B(p) is different from zero only in a small neighbor-
hood of p=p®@, the expression (18) becomes

(D)=— T (40,12)p-p0.

Jj=1

We see that the gradient of the phase a assumes the role
of the constant a of Sec. I [Eq. (4)]. Similar expres-
sions can be obtained for the expectation values of the
other generators.

If we have the scattering of two particles, then the
influence of the interactions shows itself in a shift of the
phase a. The consequences of the asymptotic conserva-
tion of D for the phase shift at very high energies have
been discussed in Ref. 6 and their comparison with
experiments in Ref. 8.

The momentum wave packets ¢(p) are transformed
into Bessel-Hagen momentum wave packetsy (%) by the
unitary and Hermitian transformation’

1
R(p,h) =EJ o[(2p- )],

where Jy is a Bessel function of order zero. We have the
relations

n=[ Lrones), s@= [ R0
Kb()—/zpo (?; QHP, ¢p—/2ho ?,'l/ .

In the limiting case of sharp momentum, ¢(p)
=2pd(p—p©), we get Y(W)=R(p®,h), ie., ¥(h) is a
Bessel function. A state with a sharp momentum con-
tains therefore all possible Bessel-Hagen momenta.
This situation is very similar to that of the momenta p
and the positions ¢ in quantum mechanics, where we
have a plane wave instead of a Bessel function as a
unitary transformation connecting p and ¢ wave
packets. The close relationship between the Lie algebra
of the conformal group and the algebra of quantum
mechanics has been analyzed previously.'* On the other
hand, if we have a state with sharp Bessel-Hagen mo-
mentum, it contains, loosely speaking, arbitrary ener-
gies. Since the Bessel function Jo(#) behaves like
(2/7u)? cos(u—m/4) for very large u, the high-energy
tail of Jo is perhaps hot very important in the above
transformation.

The above discussion shows the importance of the
transformation R for the experimental determination
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of Bessel-Hagen momenta: We can obtain their distri-
bution ¢(%) by measuring the momentum distribution
¢(p) and then making the integral transformation with
the kernel R(p,k).

If we forget for a moment that the photon has a spin,
we can prepare a wave packet with sharp Bessel-Hagen
momentum 4@ if the momentum space amplitude is
given by Jo(ph®). Optics is probably one of the possible
fields of application of the conformal group. Since there
is no experimental experience with Bessel-Hagen mo-
menta at all, proposals, discussions, and performances
of such experiments are extremely desirable.

V. THE GEOMETRICAL INTERPRETATION OF
THE SPECIAL CONFORMAL GROUP

The dilatations and the special conformal group are
defined by the following relations

xi— pxi; p>0,7=0,1,2,3; (19)
x*— RT(c)Rx= (xi—c'a?) /o (%),

o(x)=1—2¢c-x+c%?; (20)

Rxi=—xi/x?; T(c)xi=x'4c". (21)

The physical interpretation of the dilatations has
been discussed to some extent in earlier papers.t—52%
Here we want to give an analysis of the special con-
formal group and the inversion by reciprocal radii R. We
immediately encounter the following problem: The
image Rx* of all coordinates with the property 42=0 is
infinite, and one would like to know the physical mean-
ing of this. Since o (%) =c2(x*—c?/c?) (xs—ci/c?) the same
holds true for the light cone (x—c/c?)?=0 in the case
of the transformations (20). As ¢* is an arbitrary
parameter, we can map any quadruple x of coordinates
into an infinite one.

The mathematical tools to treat this problem are the
homogeneous coordinates. In order to keep their intro-
duction as physical as possible we start with the simpler
case of the dilatations. As usual we define the number ds
which characterizes the distance between a point and
other points in its neighborhood by the form

dst=dwide= (da0)2— (du)2— (da?)— (da)?.

In the following we always keep the coordinate system
fixed and interpret the transformations as mappings,
i.e., we adopt the so-called?® “active” viewpoint.

The dilatations (19) mean that any length, charac-
terized by the components da® and the number ds? is
transformed parallel to itself into another length,
characterized by pdx? and p?ds®. For instance, a length of
10 mm is mapped onto another one which is 80 mm
long. Equation (19) says that the dilatations also map
the coordinates %, not only the lengths ds. The crucial
point for the following discussion is that it is #o? neces-

(22)

27 Th. A. J. Maris, Nuovo Cimento 30, 378 (1963).
28 A, S. Wightman, Nuovo Cimento Suppl. 14, 81 (1959).
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sary for the coordinates of a space-time point P to have
a dimension of length. They can be pure numbers.
Indeed, we can always characterize a position by four
dimensionless numbers, for instance by (1,1,1,1), with-
out referring to any unit of length, but we cannot
characterize a length, which by definition involves fwo
points, without giving the standard of length to which
we refer.1

We introduce the dimensionless coordinates 77
i=0, 1, 2, 3, which are supposed to characterize the
position of a space-time point relative to a given
coordinate system, in the following way : Let us assume
we have a translation and Lorentz-invariant standard of
length at every space-time point P, for instance the
proper time interval of a clock, which can be translated
into a standard of length by multiplication with the
velocity of light. Let us characterize this standard by a
number k with the dimension of length —1, for instance
10 cm™L. The relationship between the coordinates x*
and 7* is then defined by

xi=q%/k, 1=0,1,2,3. (23)
The quantity & is supposed to be invariant under all
transformations of the full Poincaré group. Under
dilatations it transforms as follows: x — p~, for in-
stance 10 — 100 cm™. The coordinates #* are invariant
under dilatations, i.e., the positions of space-time points
are considered invariant under this group.

Under translations and proper orthochronous Lorentz

transformations the coordinates transform like this:

n°— ni+a',
7t — Agin®, 1=0, 1,2, 3.

Since the Poincaré group leaves « invariant, it does not
distinguish between the coordinates x? and »° at all. By
a suitable choice of the standard of length we can put
x=1. The difference appears if we consider dilatations.
We have seen in Refs. 6 and 7 that the invariance under
dilatations is not as general as the invariance under the
Poincaré group, and that for each system considered,
one has to find out whether there is such a symmetry or
not. For macroscopic systems and very high-energy
atomic physics this invariance seems to exist. In other
words, we have to make sure that the possible standards
of length, characterized by «, form a continuous mani-
fold, if we want to introduce the dilatations as a physical
symmetry group. To summarize: We characterize a
point P in space-time by the coordinates (n°n,n%,7°%; «),
the first four of which denote the position of the point
and the last of which characterizes the standard of
length associated with that point. For x>0 we can
always use the old coordinates «%, but for k=0, which
can occur as soon.as we have the transformation by
reciprocal radii (see below), this is no longer possible.

From Eq. (23) it follows that

dxt=x"dn’—2n%dx. (24)
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If k does not vary from point to point, we have dk=0.
This is no longer true if we consider the transformation
by reciprocal radii and the special conformal group. In
order to discuss these groups we introduce the spurious
variable N, defined by A=«x? or

n—eN=0. (25)
We now write the transformation by reciprocal radii in
the following form:

R: pi—qi, i=0,1,2,3; «— —\, A—> —«k. (26)
These relations show that the position of a space-time
point is not affected at all by R, only the standard of
length is changed, but generally in a different way for
different space-time points.

Since A=0 for 2=0, the transformation (26) means
for these points on the light cone that the new standard
of length is vanishingly small. The number ds2= (x?)~2ds?
which characterizes the image lengths, therefore goes to
infinity at these points. I do not suggest that such a
gauge is convenient from a practical point of view, but I
want to emphasize that the Minkowski space has these
geometrical gauge properties which may have very
interesting consequences.?®

According to Eq. (20) we can construct the elements
of the special conformal group from the translations and
the inversion R. This gives

ni—=ni=c\,
k— —2¢mi+k+cN,
A—A.

27

It is easy to verify the fact that all transformations
discussed so far leave the quadratic form n%;—«\ in-
variant. This is the well-known theorem® that the full
conformal group of the Minkowski space, including the
Poincaré group, is isomorphic to the group 0(2,4).

From Egs. (23), (24), and (25) it follows that

dst= dwida;=2(dnidn—dkd\) . (28)

2 The notion of gauge transformations has always been very
stimulating for particle physics. H. Weyl [Space-Time-Maiter,
translation of the fourth German edition (Dover Publications,
Inc., New York, 1922)7 considered a very general class of geo-
metrical gauge transformations in the framework of general
relativity. He tried to associate these transformations with the
gauge transformations in electrodynamics, but later considered
this attempt a failure [Naturwiss. 19, 49 (1931)7]. Gauge groups
similar to those in electrodynamics were introduced into particle
physics by Yang and Mills [Phys. Rev. 96, 191 (1954)] and
utilized by J. J. Sakurai [Ann. Phys. (N.Y.) 11, 1 (1960)], M.
Gell-Mann [California Institute of Technology Laboratory Re-
port CTSL-20, 1961 (unpublished), reprinted in Ref. 1], Y.
Ne’eman [Nucl. Phys. 26, 222 (1961)], and others. At the moment
the relationship between these gauge transformations and those of
the conformal group is not clear to us, but they do not seem to be
independent (see Ref. 11).

# See, for instance, F. Klein, Vorlesungen iiber die Entwicklung
der Mathematik im 19. Jahrhundert (Julius Springer-Verlag,
Berlin, 1927), Vol. I1, p. 77.

GAUGE PROPERTIES OF MINKOWSKI SPACE

1189

This relation is extremely important, for it shows that
we can express ds? in terms of the new coordinates and
that we can define space-like and time-like distances by
means of the sign of the quadratic form dnidn;—dkd\,
where the differentials are subject to the condition [Eq.
(25)] 2n%dn;—kdN—Ndk=0. Since dn*dn;—dkd\ is invari-
ant under the full conformal group, time-like and space-
like distances are invariant concepts for the conformal
group, too. This is important to our understanding of
the so-called Einstein causality, which states that space-
like events cannot be causally dependant.

There seems to be a certain amount of confusion as to
whether the special conformal group violates causality
or not. Since this is an important point, a more detailed
discussion may be appropriate. It was, as to my
knowledge, first pointed out by Wess® that the sign of
the global form (x—¥)? is not invariant under the special
conformal group, whereas the sign of the differential
form dx‘dx; is invariant. The physical aspects of these
properties were discussed by me in Ref. 10. I argued that
the differential form is essential for physics, because the
coordinate transformations induced by the special con-
formal group in « space are nonlinear and it follows from
all we know about differential geometry and general
relativity that we have to use the differential form for
defining distances, if we are dealing with nonlinear
coordinate transformations.

Later®2 Gamba and Luzzato, obviously unaware of the
discussions by Wess and myself, argued that the con-
formal group is unphysical, because the sign of the
global form (x—%)? is not invariant. But Zeeman’s
theorem, on which these authors base their arguments,
assumes that distances are defined by a global quadratic
form (x—1v)2. For the reasons given above, I think one
has to use the differential quadratic form in « space, if
one discusses the conformal group. By doing so Zeeman’s
theorem does not apply and by using the differential
form it is quite possible to describe a causal ordering of
events in x space even for the special conformal group.

Furthermore, we have seen that one has to introduce
the coordinates 7% k, A in order to get a consistent
description of the properties of the conformal group, for
otherwise there would be no one-to-one correspondence
between points and their images. We have already
mentioned that we can define space-like and time-
like distances by means of the differential form dnidn;
—dkdM. Since the transformations of the full conformal
group are linear in 7 space, we can even use the sign of
the global form

(M2—n1)2— (ke — K1) Na— A1) = — 21 notr1da+ K2\

in order to define, when the two arbitrary points
P1= (q1,k1,M) and Py= (ng,k2,N) are space-like or time-
like relative to each other.

31 T, E. Wess, Nuovo Cimento 18, 1086 (1960).

%2 A, Gamba and G. Luzzato, Nuovo Cimento 33, 1732 (1964);
this note is based on an article by E. C. Zeeman, J. Math. Phys. 5,
490 (1964). )
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The difference between the global quadratic forms in
% space and 7 space can be seen from the relation

1
(21— 29)?=—L (m1—12)*— (k1—K2) \1—N2) ].

KiK2

The crucial point is that the sign of kix, can change under
special conformal transformations and therefore only
the sign of xiks(x1—x2)? has a conformal-invariant
meaning.

Our main conclusion from the above discussion is the
following: The squared numerical value of the local
distance between two points which are near to each
other is given by x=%(dn’dn;—dkd\), where the scale
factor « is in general a function of the point under con-
sideration, as can be seen from Eq. (27). But the pos-
sible forms of « as a function of the different positions is
not arbitrary. Only those « are admitted here which can
be generated from a constant by the elements of the full
conformal group. This is a severe restriction in compari-
son to Weyl’s theory.?®

The possibility of having different standards of length
at different points is not unusual in physics: Physicists
in Princeton may measure a certain length, for instance
the wavelength of a spectral line, in inches, whereas
physicists in Munich may measure it in meters. In order
to compare their different numerical results, one has to
know the ratio k(P1)/k(Ps,) of their standards of length.

If we want to determine whether two points are
space-like or time-like relative to each other, we can use
the global quadratic form in 7n-space (but not in x
space) : Given any two points P1(n1,k1,M1) and Pa(nz,k2,\s),
we can infer in a conformal invariant way from the sign
of (n3—m1)%— (ka—k1) A\2—\1) whether the two points are
space-like or time-like relative to each other. This
definition of space-like and time-like distances coincides
with the conventional one, if we restrict ourselves to the
Poincaré group and the dilatations, i.e., if  is the same
for all points.

I have already given arguments before,'*!* as to why
the conventional interpretation of the special conformal
group as a system of transformations which connects
physical systems with relative constant accelerations
cannot be the right one. The origin of this interpretation
can be seen from the first of the Egs. (27), replacing A by
k'nin;. If we keep the transformed coordinates fixed,
these equations impose a hyperbolic relationship on the
original space and time coordinates. Since constant
accelerations lead to so-called hyperbolic motions if one
solves Lorentz’s equation, people have suggested the
interpretation of the conformal group just mentioned.®

A close look at the transformation formulas reveals
that this interpretation is not possible, for the alleged

3 See, for instance, W. Pauli, Theory of Relativity (Pergamon
Press, Ltd., London, 1958).

3 A long list of papers can be found in Ref. 10; see also T.
Fulton, R. Rohrlich, and L. Witten, Rev. Mod. Phys. 34, 442
(1962) ; Nuovo Cimento 26, 652 (1962).
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accelerated system could move with a velocity larger
than the velocity of light. As far as we know, only phase
velocities can have such a property, but not the veloci-
ties of particles. Let us assume that only ¢*#0 in Egs.
(27) and let us define ¢ 1=b. We then have

7=n,
1/ 1
n=n,
(29)
7'=n,

1% =n’—bn'n..

We ask which velocity a fixed point in the primed
system has with respect to the old one. Differentiation
gives

0=9—0(29"—2v?), (30)

where v=97°/d°. By substituting the relation (29) into
Eq. (30) we get

[ 14-40% (1) 400" 1= 4b (n*—n*'+bop?) .

We see that 12> 1, if 482(n2-+n2)—4bn¥>1. But this
condition can be fulfilled quite easily for appropriate
values of the different variables. The possibility #*>1
clearly contradicts the interpretation of v as the
(group-) velocity of a physical system. Thus, it is not
possible to interpret the elements of the special con-
formal group as a class of transformations from a
physical system at rest to physical systems which move
under the influence of a certain force which imparts
accelerations, for as far as we know, even the velocity of
an accelerated system cannot exceed the velocity of
light.

We have discussed in Ref. 11 that this type of velocity
which appears in connection with the transformation by
reciprocal radii and the special conformal group can be
understood as a kind of phase velocity. In Ref. 11 it was
also discussed that the group velocity associated with
the eigenfunctions of the special conformal group de-
scribes linear motions and this velocity does not exceed
the velocity of light. The group velocity of Ref. 11 is
identical with the % velocity in Sec. II of the present
paper.

We want to emphasize again that the discrete group
R is extremely powerful. Together with the translations,
it generates the special conformal group, the dilatations
and the proper orthochronous Lorentz group.”-!!

It is also important to know that the gauge trans-
formations discussed here are the only ones of the
Minkowski space. This follows from a theorem?® first
proved by Liouville for three dimensions and later
generalized by Lie for arbitrary dimensions # 2 3, which
says that the full conformal group in # dimensions is the

36 Liouville’s proof is contained in his editorial note VI of G.
Monge’s book : A pplication del’ Analyse & la Géoméirie (Bachelier,
Paris, 1850). S. Lie and F. Engel, Theorie der Transformations-
gruppen (B. G. Teubner Verlag, Leipzig, 1893), Vol. 111, Chaps. 17
and 18. A proof of the theorem can also be found in H. Weyl’s very
interesting lectures: Mathematische Analyse des Raumproblems
(Julius Springer-Verlag, Berlin, 1923).
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largest group with the property leaving the quantity
> i=1" dx’dx;=0 of a Euclidean (or pseudo-Euclidean)
space invariant.

VI. TRANSFORMATION PROPERTIES OF
PHYSICAL QUANTITIES UNDER
THE CONFORMAL GROUP

In the previous section we have discussed the geo-
metrical interpretation of the dilatations and the special
conformal group. We want to discuss now how physical
quantities like field strengths, vector potentials, etc.,
transform under these new groups. All these quantities
have a certain dimension of length and their numerical
value is therefore a function of the standard of length
which is employed. If we change this standard, then the
numerical values of the physical quantities are changed
according to their dimension of length. In the case of the
transformation by reciprocal radii and the special con-
formal group, the field quantities are transformed non-
linearly* in the coordinates %, but since the full con-
formal group is isomorphic to the group 0(2,4), it is
very convenient to relate the usual field quantities to
the tensor and spinor representations of that group.
This problem has been discussed mathematically by
Dirac,’ and we shall rely heavily on his results.

Our aim is to write down field equations of interacting
fields which are manifestly covariant under the con-
formal group and which are closely related to the usual
field equations in quantum electrodynamics, the pseudo-
scalar coupling, etc. One of the features of these new
equations is that they do not contain any bare rest
masses. We therefore have to assume that the rest
masses are a consequence of the interaction. In the rest
of this paper we shall provide the means which are
needed in order to write down these new field equations.
Their analysis will be given elsewhere.

In order to utilize the summation convention we
define k=7*—n°% A=79'+%5 and let Latin indices run
from 0 to 3 and Greek indices from O to 5. This means,
for instance,

Nni— kN =11,

Let A(x) be any invariant with respect to the
Poincaré group. We assume that 4 (x) transforms under
dilatations as follows A (x) — A’(px)=p"4 (x), i.e.,
A (x) has the dimension of length . If we define

A (ﬂ)EA (’707' : '1’75)=Kn‘zj:(’70/"" : ',7)3/") )

then A4 (n) is not only invariant under the Poincaré
group but also invariant under dilatations. Further-
more, A (1) is homogeneous in 5 of degree #, i.e.,

31)

10, A ()=nA(n), 0u=29/dn". (32)
A similar discussion can be given for vectors, tensors

etc. and we conclude that we can confine ourselves to
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those field quantities in 5 space which are homogeneous
in the coordinates 7.

If F(n) is any homogeneous function of the coordi-
nates 7, its physical domain of definition is confined to
the hyper-light-cone 5#9,=0. Thus we can add to F(n)
any function #*B(n) without altering the properties of
F (1) on the hyper cone. Dirac has investigated a number
of consequences of this feature, and we refer to his paper
for further details.

If the two quantities F(x) and F(y), where F(n) is
homogeneous of degree #, are related to each other by

Flw)=c—F(@), (33)

their derivatives obey the following equation
. 9 _ ]
34 (x)=—F () =K—",:KakF(77)+ z'mr-F("I)] . (34)
duxk oA

This relation has a simple meaning which can be seen
from Eqs. (27): 9; is the generator of the infinitesimal
translations in the space of the functions F(x), and
kdx+2n1(8/0N) is the generator of the translations in
the space of the functions F ().

Because of Eq. (23) the relation (33) is defined only
for k0. But we have seen before that k can become zero
for certain classes of points if we implement the trans-
formation by reciprocal radii. Therefore it would be
better to write F(P)=«""F(q), where P denotes
(2P m; k). By so doing we extend the domain of
definition of F(x) and that should be kept in mind
during the following discussions.

Important physical quantities in particle physics are
the conserved currents. For these currents the following
interesting lemma holds: If j#(n) is a vector with respect
to the group 0(2,4) with the properties
v=0, -+, 5;

40,5 () =nj", n.J*=0,

and if we define the 4-vector 7*(x) by the equation
FF@)=k""Lj* @) —n*/x(5*— 7)1,
then we have the following relation

3kt (@) =k""1[8,7(n) —x (0 +3) (5*— 791, (35)

i.e., 7%(x) is a conserved current in x-space if j#(n) is a
conserved current in n-space and if n=—3. All the
physically interesting currents seem to be of this type.
Examples are given in the next sections.

By integrating 7%(x) over the total three-dimensional
space, we get the “‘charge” associated with the con-
served current. Because of Eq. (23) we have in general

dx'dx*dxd =k 3dndn?dn® ‘
— k(' drdnPdnP-+nPdntdrdn®-+nidntdn?dx) .

If we choose our gauge in such a way that « is the same
for all space-time points then we have dk=0. This
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means

0= / daidadsd ()

- / dndtdn P () — (/) (= 3],

where Q is time-independent, if the current is conserved.

VII. THE FREE SCALAR FIELD

It is easy to verify that the relations

A@)=xA (), n*0.4(n)=—A4(n) (36)
imply the equation
9:0*A () =k30#9,4 (n) ; 37

i.e., if A(x) is a solution of the massless Klein-Gordon
equation, then 4 (y) is a solution of 9#3,4 (n)=0 and
vice versa. The current

Jw=(4%3,4—0,4*4)

is conserved and homogeneous of degree —3. It follows
from the second of the Eqgs. (36) that it fulfills the con-
dition #*j,=0 and we have, therefore, exactly the
situation encountered in our lemma of the last section.

Of particular interest are those solutions of the
equation 9*d,4 (9)=0 which can be expanded in terms
of the plane waves e¢=??'*=¢~%»7/* or in terms of the
corresponding functions e™:#/#2=¢i*7* of the special
conformal group. Both types of functions are homo-
geneous in the new coordinates, and they are eigen-
functions of the operators

i} i}
P,=i(lcaj—|-2'q]——> R Kj=i<_)\6j“2"lf“) )
oA Ik

respectively. If we want expansions in terms of these
functions to be solutions of the above free-field equation
we have to require p?=0, #2=0.

Usually only expansions in terms of the plane waves
are considered, but in the framework of the conformal
group the operators K; are on the same level as the P;,
and this leads to a number of very interesting problems
if one considers field theories in the framework of the
conformal group.”+%

VIII. MAXWELL’S EQUATIONS

The classical Maxwell fields have been discussed by
Dirac and we confine ourselves to some definitions we
shall need later on. The free-field equations for the
vector potential are

a”aﬂAl’(n):O) V=O> Tty 5 ; a”AM(ﬂ) =0 )
749ud,(n)=—A4,(n), n*4.(n)=0.
3 H. A. Kastrup, Phys. Rev. 140, B183 (1965).
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The usual vector potential A*(x) is given by
A (@) =kA r(n)—ni(4—4°).

With the definition F' ,,,.(n) 9.4 ,— 9,4, we have for the
physical field strengths F; k(P), 1, k=0,1,2, 3,

F i1 (P)=2F i1.(n) 4k (10— n49:) (44— A4)
a
n—A i) .
oA

In our new framework we have two types of gauge
transformations for electrodynamics: those which are a
consequence of the field strengths being the physically
interesting quantities, not the potentials, and the geo-
metric gauge transformations associated with the dila-
tations and the special conformal group. The latter
affect the field strengths, too. We shall not investigate
all these different gauge properties and their relationship
to each other in this paper.

d
+2K<7),——A =
oA

IX. THE SPIN-} FIELD

The following discussion differs to some extent from
Dirac’s, who considers 4-component spinors in g-space.
But if we want to include the reflections, we have to
double the components.”

The Clifford algebra we are going to employ is
generated by six elements 3# defined by the relations

BHB7+B"BH=2g", (38)
where g¥= —gll= — 2= — g¥= — gM=¢55=1 3]] other

g*” vanish. Equations (38) are fulfilled by the explicit
construction

Bk=7k®‘717 k=0) 17 2) 3?

Bi=1v’Q®a1, B°=

where the v* are the usual Dirac matrices, the o,,
a=1,2, 3, are the Paulimatrices and y®= iy'y'y2y3= — ;.

With M,,=i(n,9,—n,9,) we can write down the
following free-field equation for the 8-component spinor

X(n):

1(T® o2, (39)

BB M X (n) = 43X () . (40)
X(n) is homogeneous of degree —2, i.e.,
1#9,X () = —2X(n) . (41)

The equation (40) is invariant under the transforma-
tions S(a) of the covering group SU(2,2) of the con-

3 The spinor representations of the general group O(p,q),
p+q=mn, have been treated by R. Brauer and H. Weyl, Am. J.
Math 57 425 (1935), and the special application of their work for
the group 0(2,4) has been discussed in Ref. 10, where references to
related papers can be found. W. A. Hepner’s paper appeared in
Nuovo Cimento 26, 351 (1962). See also R. J. Finkelstein, Nuovo
Cimento 1, 1104 (1955) For a more modern analysis of spinors
see M. Rlesz University of Maryland, The Institute for Fluid
Dynamics and Applied Mathematics, Lecture Series No. 38,
1957-1958 (unpublished). I am indebted to Dr. D. Hestenes for
drawing these lectures to my attention.
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formal group. This can be inferred from the relation
S(@)BS (@) =amp,

where the real numbers a#, are the coefficients of an
element of 0(2,4). The adjoint spinor x is defined by

X—X4, 4=—iB8=+1"Qo3,

and we have x — xS~ if X — SX.
Because of the relations (39) Eq. (40) decomposes
into two equations for 4-component spinors X; and Xs,

where
X1
()
Xo

I:Tsing tpe relations Pj= M+ M;s, K',-= — M+ M s,
D=—My;, we get

'Yk’Ylezx1+i'Yk(1+’Y5)kax+i’¥’°(1—"Y5)kax

+2y5DX, =4iX,, (42)
Yoy U i Xa— iy (1 =) PiXa— iy F (145 K 1Xs
—2y5DXy=41X,. (43)

Each of these equations is invariant separately under
the group SU(2,2).

It is easy to verify the fact that the 2-component
spinors

Y1(w) =5 (14+7) (k4-inty ) Xa (n) (44)

Ya(2) =3 (1—7%) (k—in*y &) Xa (n)
are solutions of the Dirac equation

Y. (x)=0, a=1,2.

and
(45)

A few remarks about reflections: for space reflections
P we have®®

S (P)=wpBBB%=iwpy’y* Q0.

wp is a phase factor. The factor o5 shows that X; and X,
are interchanged. Because of the relations (44) and (45),
Y1(x) and ¥s(x) are transformed as usual.

The transformation S(R) by reciprocal radii is
represented by

S(R)=wrBPB'B*BB°= —iwry*®a2.

Again, X; and X, are interchanged by S(R).
It is easy to see that the quantity X8X,

B7=—1B8'6°6°3'6°=1Qu0;
changes its sign under S(P) and S(R), i.e.,, X8'X is a

(46)

(47)
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pseudoscalar. We also observe the close relationship
between P and R. This is probably quite important for
the problem of parity conservation, etc.

It follows from Egs. (40) and (41) that the current

i
3#(n) =Em>2(ﬁ”ﬁ"—ﬁ"ﬂ")x (48)

is conserved, is homogeneous of degree —3, and obvi-
ously has the property #,5*=0.

We are at last able to write down nonlinear equations
for spin-0, spin-%, and spin-1 fields. With the definitions
of the preceding discussions we have

ﬂ“BV[MF"_ q(nud,—nd,) X (n) =4iX(n) ,
a'“aMA v(”l) =¢1fv("1) ’ v=0, ---, 5 ) a”Au("’)=0 ’ (49)
n*4 n(’?) =0, 7#d.4 y)=—4,(), ﬂ"anx("i) =—2X(n).
7,(n) has the same form as in Eq. (48). The system (49)
is our new set of equations for quantum electrodynamics.
The pseudoscalar coupling is given by
BHB"M X (n) — 40X (n) = gA (n)n 876X ()
9#0uA (n) = —gniXB"B"X.
Other nonlinear field equations can be constructed
accordingly.
In order to extract physical information out of Egs.
(49) and (50) we have to discuss the properties of the

groundstate and the algebraic structure of the field
operators. This will be done elsewhere.

(50)
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